wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
cos 4θ-cos 4α=8 cos θ-cos α cos θ+cos α cos θ-sin α cos θ+sin α

Open in App
Solution

RHS=8cosθ-cosα cosθ+cosα cosθ-sinα cosθ+sinα =8cos2θ-cos2α cos2θ-sin2α =8cos4θ-cos2θ×sin2α-cos2α×cos2θ+cos2α×sin2α =8cos4θ-cos2θsin2α+cos2α+cos2α×sin2α =8cos4θ-cos2θ+cos2α×1-cos2α =8cos4θ-cos2θ+cos2α-cos4α =8cos2θcos2θ-1+cos2α×1-cos2α

=812cos2θ2cos2θ-2+12cos2α×2-2cos2α =812cos2θ2cos2θ-1-1-12cos2α×2cos2α-1-1 =812cos2θcos2θ-1-12cos2α×cos2α-1 cos2α=2cos2α-1 =8142cos2θcos2θ-1-2cos2α×cos2α-1 =8141+cos2θcos2θ-1-1+cos2αcos2α-1

=814cos22θ-1-cos22α+1 =8182cos22θ-2cos22α =1+cos4θ-1+cos4α = 1+cos4θ-1-cos4α =cos4θ-cos4α=LHSHence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon