Prove that:
cos 4θ−cos 4α=8(cos θ−cos α)(cos θ+cos α)(cos θ−sin α)(cos θ−sin α)
cos 4θ−cos 4α=2cos2 2θ−2cos2 2α=2(cos 2θ+cos 2α)(cos 2θ−cos 2α)=2(2 cos2 θ−1+1−2 sin2 α)(2 cos2 θ−1−2 cos2 α+1)=8(cos2θ−sin2 α)(cos2 θ−cos2 α)=8(cos θ−sin α)(cos θ+sin α)(cos θ−cos α)(cos θ+cos α)