Prove that:
cos 4A=1−8 cos2 A+8 cos4 A
LHS = cos 4A
= cos 2.2A
=2cos2 2A−1[∵ cos 2θ=2 cos2 θ−1]=2(2 cos2 A−1)2−1=2(4 cos4 A−4 cos2 A+1)−1=8 cos4A−8 cos2 A+1=1−8 cos2 A+8 cos4 A
= RHS
If sin A + sin2 A + sin3 A = 1; then find cos6 A – 4 cos4 A + 8 cos2 A -