Prove that cos 4x = 1 - 8 sin2xcos2x.
We have
LHS = cos4x
= cos2(2x)=cos2θ, where 2x=θ
= cos2θ−sin2θ
[∵cos2θ=cos2θ−sin2θ]
= (1−2 sin2θ)={1−2(sin2x)2} [∵sin2x=2sin x cos x ]
=1−8 sin2xcos2x=RHS.
Hence, cos4x=1−8 sin2xcos2x
cos 4x = 1 – 8sin2 x cos2 x