wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: cos4x=1-8sin2xcos2x


Open in App
Solution

Determine the proving of the cos4x=1-8sin2xcos2x

Using formula:

cos2x=2cos2x1

replacing x by 2x, we get

cos2(2x)=2cos2(2x)1cos4x=2cos22x1OR=2(cos2x)2-1cos2x=2cos2x1=2(2cos2x1)2-1=2[(2cos2x)2+(1)2-2.2cos2x.1]-1=2[(4cos4x)+1-4cos2x]-1=8cos4x+2-8cos2x-1=8cos2x(cos2x1)+1=8cos2x[(1cos2x)]+1=8cos2x[(1cos2x)]+1=8cos2xsin2x+1[sin2x=1cos2x]=18cos2xsin2x

Hence, the given expression is true.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon