Prove that: cos4x=1-8sin2xcos2x
Determine the proving of the cos4x=1-8sin2xcos2x
Using formula:
cos2x=2cos2x–1
replacing x by 2x, we get
cos2(2x)=2cos2(2x)–1⇒cos4x=2cos22x–1OR⇒=2(cos2x)2-1∵cos2x=2cos2x–1⇒=2(2cos2x–1)2-1⇒=2[(2cos2x)2+(1)2-2.2cos2x.1]-1⇒=2[(4cos4x)+1-4cos2x]-1⇒=8cos4x+2-8cos2x-1⇒=8cos2x(cos2x−1)+1⇒=8cos2x[−(1−cos2x)]+1⇒=−8cos2x[(1−cos2x)]+1⇒=−8cos2xsin2x+1[∵sin2x=1−cos2x]⇒=1−8cos2xsin2x
Hence, the given expression is true.
Prove that cos 4x = 1 – 8sin2 x cos2 x