cos510cos330+sin390cos120
We have
cos510=cos(360+150)=cos150
=cos(180−300)
=−cos30
cos330=cos(360−30)=cos30
sin390=sin(360+30)=sin30
&cos120=cos(90+30)=−sin300
∴LHS=−cos30⋅cos30+sin3θ(−sin30)
=−(cos230+sin230)
=−1
Hence proof
Prove that:
(i)tan720∘−cos270∘−sin150∘cos120∘=14
(ii)sin780∘sin480∘+cos120∘sin150∘=12
(iii)sin780∘sin120∘+cos240∘sin390∘=12
(iv)sin600∘cos390∘+cos480∘sin150∘=−1
(v)tan250∘cot405∘+tan765∘cot675∘=0
cosA + cos (120° + A) + cos(120° - A) =