Prove that cos A 2A cos 4A cos 8A = sin 16A16 sin A.
Givne ,LHS=cos A cos 2A cos 4A cos 8A
On multiplying and dividing by 2 sin A, we get
=12 sin A (2 sin A cos A cos 4A cos 8A)
=12 sin A (sin 2A cos 2A cos 4A cos 8A) [∵sin 2x=2 sin x cos x]
=14 sin A (2 sin 2A cos 2A cos 4A cos 8A)=14 sin A(sin 4A cos 4A cos 8A [∴2 sin 2x cos2x =sin 4x]
=18 sin A (2 sin 4A cos 8A)=18 sin A (sin 8A cos 8A)
=116 sin A (2sin 8A cos 8A)=sin 16A16sin A=RHS