wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that cos A 2A cos 4A cos 8A = sin 16A16 sin A.

Open in App
Solution

Givne ,LHS=cos A cos 2A cos 4A cos 8A

On multiplying and dividing by 2 sin A, we get

=12 sin A (2 sin A cos A cos 4A cos 8A)

=12 sin A (sin 2A cos 2A cos 4A cos 8A) [sin 2x=2 sin x cos x]

=14 sin A (2 sin 2A cos 2A cos 4A cos 8A)=14 sin A(sin 4A cos 4A cos 8A [2 sin 2x cos2x =sin 4x]

=18 sin A (2 sin 4A cos 8A)=18 sin A (sin 8A cos 8A)

=116 sin A (2sin 8A cos 8A)=sin 16A16sin A=RHS


flag
Suggest Corrections
thumbs-up
55
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon