wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that (cosA+cosB)2+(sinAsinB)2=4cos2(A+B2)

Open in App
Solution

LHS=cos2A+cos2B+2cosAcosB+sin2A+sin2B2sinAsinB

(cos2A+sin2A)+(cos2B+sin2B)+2cosAcosB2sinAsinB

2+2cosAcosB2sinAsinB

2+cos(A+B)+cos(AB)cos(AB)+cos(A+B)

2+2cos(A+B) (cosx=2cos2x21)

2+2[2cos2(A+B)21]

2+4cos2(A+B)22=4cos2(A+B)2=R.H.S

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Right Angled Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon