wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that (cosA-sinA+1)(cosA+sinA-1)=cosecA+cotA.


Open in App
Solution

L.H.S=(cosA-sinA+1)(cosA+sinA-1)

Divide numerator and denominator with sinA.

=(cosAsinA-sinAsinA+1sinA)(cosAsinA+sinAsinA-1sinA)

=(cotA1+cosecA(cotA+1cosecA)

=cotA+cosecA-cosec2A-cot2A(cotA+1cosecA)……………………..[(1+cot2θ=cosec2θ)]

=cotA+cosecA-cosecA+cotAcosecA-cotAcotA+1-cosecA………………….([a2-b2=(a+b)(a-b)])

=(cotA+cosecA)(1cosecA+cotA)(cotA+1cosecA)

=(cotA+cosecA)(1cosecA+cotA)(1cosecA+cotA)

=(cotA+cosecA)

=R.H.S.

Hence, it is proved that, (cosA-sinA+1)(cosA+sinA-1)=cosecA+cotA.


flag
Suggest Corrections
thumbs-up
16
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon