wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that cosα+cosα+β+cosα+2β+...+cosα+n-1β=cosα+n-12βsinnβ2sinβ2 for all nN. [NCERT EXEMPLAR]

Open in App
Solution

Let pn: cosα+cosα+β+cosα+2β+...+cosα+n-1β=cosα+n-12βsinnβ2sinβ2 nN.Step I: For n=1,LHS=cosα+1-1β=cosαRHS=cosα+1-12βsinβ2sinβ2=cosαAs, LHS=RHSSo, it is true for n=1.Step II: For n=k,Let pk: cosα+cosα+β+cosα+2β+...+cosα+k-1β=cosα+k-12βsinkβ2sinβ2 be true kN.Step III: For n=k+1,LHS= cosα+cosα+β+cosα+2β+...+cosα+k-1β+cosα+k+1-1β=cosα+k-12βsinkβ2sinβ2+cosα+kβ=cosα+k-12βsinkβ2+sinβ2cosα+kβsinβ2=sinα+kβ-β2-sinα-β2+sinα+kβ+β2-sinα+kβ-β22sinβ2=-sinα-β2+sinα+kβ+β22sinβ2=2cos2α+kβ2sinkβ+β22sinβ2=cosα+kβ2sink+1β2sinβ2RHS=cosα+k+1-12βsink+1β2sinβ2=cosα+kβ2sink+1β2sinβ2As, LHS=RHSSo, it is also true for n=k+1.

Hence, cosα+cosα+β+cosα+2β+...+cosα+n-1β=cosα+n-12βsinnβ2sinβ2 for all nN.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon