wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that : cos2π7+cos4π7+cos6π7=12.

Open in App
Solution

Multiply both sides with sin(π7)
sin(π7)cos(2π7)+sin(π7)cos(4π7)+sin(π7)cos(6ππ7)
=12.sin(π7)
Then, because sinA.cosB=12[sin(AB)+sin(A+B)]
(12)[sin(π7)(2π7)+sin(π7+2π7)]+(12)[sin(π74π7)+sin(π7+4π7)]+(12[sin(π76π7)+sin(π7+6π7)])
=sinπ72
We'll divide by (12) both sides
sin(π7)+3sin(π7)3sin(π7)+5sin(π7)sin(5π7)+sin(7π7)=sinπ7
Cancelling the same terms yields to
sin(π7)+sin(π)=sin(π7)
But sin(π)=0
sin(π7)=sin(π7)
LHS=RHS
cos2π7+cos4π7+cos6π7=12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle and Its Measurement
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon