1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Circular Measurement of Angle
Prove that : ...
Question
Prove that :
cos
2
π
7
+
cos
4
π
7
+
cos
6
π
7
=
−
1
2
.
Open in App
Solution
Multiply both sides with
sin
(
π
7
)
sin
(
π
7
)
cos
(
2
π
7
)
+
sin
(
π
7
)
cos
(
4
π
7
)
+
sin
(
π
7
)
cos
(
6
π
π
7
)
=
−
1
2
.
sin
(
π
7
)
Then, because
sin
A
.
cos
B
=
1
2
[
sin
(
A
−
B
)
+
sin
(
A
+
B
)
]
∴
(
1
2
)
[
sin
(
π
7
)
−
(
2
π
7
)
+
sin
(
π
7
+
2
π
7
)
]
+
(
1
2
)
[
sin
(
π
7
−
4
π
7
)
+
sin
(
π
7
+
4
π
7
)
]
+
(
1
2
[
sin
(
π
7
−
6
π
7
)
+
sin
(
π
7
+
6
π
7
)
]
)
=
−
sin
π
7
2
We'll divide by
(
1
2
)
both sides
−
sin
(
π
7
)
+
3
sin
(
π
7
)
−
3
sin
(
π
7
)
+
5
sin
(
π
7
)
−
sin
(
5
π
7
)
+
sin
(
7
π
7
)
=
−
sin
π
7
Cancelling the same terms yields to
−
sin
(
π
7
)
+
sin
(
π
)
=
sin
(
π
7
)
But
sin
(
π
)
=
0
∴
−
sin
(
π
7
)
=
−
sin
(
π
7
)
L
H
S
=
R
H
S
∴
cos
2
π
7
+
cos
4
π
7
+
cos
6
π
7
=
−
1
2
Suggest Corrections
0
Similar questions
Q.
Prove that:
cos
2
π
7
+
cos
4
π
7
+
cos
6
π
7
Q.
cos
2
π
7
+
cos
4
π
7
+
cos
6
π
7
Q.
c
o
s
2
π
7
+
c
o
s
4
π
7
+
c
o
s
6
π
7
=