wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that cos[2tan117]=sin[4tan113].

Open in App
Solution

L.H.S =cos(2tan11/7)
=cos(2a)[a=tan11/7.]
=1tan2a1+tan2a|a=tan11/7tana=1/7|
1(1/7)21+(1/7)2
=11491+149
=4914949+149
=4850
=2425
R.H.S =sin[4tan113]=sin[4b][letb=tan113tanb=13]
= 2sin 2b cos 2b.
=2(2tanb1+tan2b)(1tan2b1+tan2b)
=2(2.131+(13)2)(1(13)21+(13)2)
=2.(239+132)(9199+19)
=2.610.810
=2425
$ \therefore L.H.S =R.H.S.

1215135_1386062_ans_e2435cad7e844ff3b61338060994fd07.JPG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon