Prove that cosθ1+sinθ=1-sinθcosθ
L.H.S.=cosθ1+sinθ
Multiplying and dividing numerator and denominator by 1-sinθ.
=cosθ1+sinθ×1-sinθ1-sinθ
=cosθ1-sinθ1-sin2θ
=cosθ1-sinθcos2θ
=1-sinθcosθ
=R.H.S.
Hence, it is proved that cosθ1+sinθ=1-sinθcosθ.
loge(n+1)−loge(n−1)=4a[(1n)+(13n3)+(15n5)+...∞] Find 8a.