Prove that cosθ(1+sinθ)+(1+sinθ)cosθ=2secθ
Determine the proof of the expression that is cosθ(1+sinθ)+(1+sinθ)cosθ=2secθ
Solve the L.H.S part:
cosθ(1+sinθ)+(1+sinθ)cosθ=cos2θ+(1+sinθ)2cosθ(1+sinθ)∵(a+b)2=a2+b2+2.a.b⇒=cos2θ+(1)2+sin2θ+2.sinθ.1cosθ(1+sinθ)⇒=cos2θ+1+sin2θ+2sinθcosθ(1+sinθ)∵cos2θ+sin2θ=1⇒=1+1+2sinθcosθ(1+sinθ)⇒=2+2sinθcosθ(1+sinθ)⇒=2cosθ⇒=2secθ
Hence, the L.H.S = R.H.S.
prove that tan theta/(1 - cos theta) + tan theta/(1+ cos theta) = 2sec theta .cosec theta
Using the identity sin2A+cos2A=1,prove that 1+sinθcosθ+cosθ1+sinθ=2secθ.