wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Prove that cosθ(1+sinθ)+(1+sinθ)cosθ=2secθ


Open in App
Solution

Determine the proof of the expression that is cosθ(1+sinθ)+(1+sinθ)cosθ=2secθ

Solve the L.H.S part:

cosθ(1+sinθ)+(1+sinθ)cosθ=cos2θ+(1+sinθ)2cosθ(1+sinθ)(a+b)2=a2+b2+2.a.b=cos2θ+(1)2+sin2θ+2.sinθ.1cosθ(1+sinθ)=cos2θ+1+sin2θ+2sinθcosθ(1+sinθ)cos2θ+sin2θ=1=1+1+2sinθcosθ(1+sinθ)=2+2sinθcosθ(1+sinθ)=2cosθ=2secθ

Hence, the L.H.S = R.H.S.


flag
Suggest Corrections
thumbs-up
169
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon