Prove that: |cos θ cos (60−θ) cos (60+θ)|≤14 for all values of θ
|cos θ cos (60−θ) cos (60+θ)|=|cos θ(cos2 60∘−sin2 θ)|{since cos(A−B) cos (A+B)=cos2A−sin2 B}=∣∣cos θ(14−sin2θ)∣∣=∣∣cos θ 14(1−4 sin2θ)∣∣=∣∣14 cos θ (1−4(1−cos2 θ))∣∣=14 cos θ (−3+4 cos2 θ)
=∣∣14(4 cos 3θ−3 cos θ)∣∣=∣∣14 cos 3θ∣∣≤ 14 {since |cos 3 θ|≤1}
So,
|cos θ cos (60∘−θ) cos (60∘+θ)|≤14