wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that cosx+cos3x+.......+cos(2n1)x=sin2nx2sinx,xKπ,KI and then deduce than sinx+3sin3x+......+(2n1)sin(2n1)x=[(2n+1)sin(2n1)x(2n1)sin(2n+1)x]4sin2x

Open in App
Solution

cosx+cos3x+.....cos(2n1)x=sin2nx2sinx
This is true for n=1,n=k
Now,for n=k+1
add cos(2(k+1)1)xcos(2k+1) on both sides which is next term in series.
cosx+....cos(2k+1)x=sin2kx2sinx+cos(2k+1)xLHS=sin2kx+2sinxcos(2k+1)x2sinx=sin2kx+2sinx[cos2kxcosxsin2kxsinx]2sinx=sin2kx+2sinxcosxcos2kx2sin2xsin2kx2sinx=sin2kx(12sin2x)+sin2x2sinx=(sin2kxcos2x)x+(sin2xcos2kx)x2sinx=sin(2kx+2x)2sinx=sin2x(k+1)2sinx=RHS

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon