Prove that (cosx+cosy)2+(sinx-siny)2=4cos
L.H.S=cosx+cosy2+sinx-siny2
We know that, a+b2=a2+b2+2ab and a-b2=a2+b2-2ab.
=cos2x+cos2y+2cosxcosy+sin2x+sin2y-2sinxsiny
=cos2x+sin2x+cos2y+sin2y+2cosxcosy-sinxsiny
=1+1+2cosx+y……………………………………………………….(sin2θ+cos2θ=1andcosa+b=cosacosb-sinasinb)
=2+2cosx+y
=21+cosx+y
=21+2cos2x+y2-1……………(cos2A=2cos2A-1)
=22cos2x+y2
=4cos2x+y2.
=R.H.S.
Hence, it is proved that(cosx+cosy)2+(sinx-siny)2=4cos