wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that (cosxcosy)2+(sinxsiny)2=4sin2xy2

Open in App
Solution

L.H.S.=(cosxcosy)2+(sinxsiny)2
=cos2x+cos2y2cosxcosy+sin2x+sin2y2sinxsiny
=(sin2x+cos2x)+(sin2y+cos2y)2(cosxcosy+sinxsiny)
=1+12cos(xy)
{cos(AB)=cosAcosB+sinAsinB}
=2[1cos(xy)]
=2[1{12sin2(xy2)}]=2[2sin2(xy2)]=4sin2xy2=R.H.S

Hence proved.

flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon