L.H.S.=(cosx−cosy)2+(sinx−siny)2
=cos2x+cos2y−2cosxcosy+sin2x+sin2y−2sinxsiny
=(sin2x+cos2x)+(sin2y+cos2y)−2(cosxcosy+sinxsiny)
=1+1−2cos(x−y)
{∵cos(A−B)=cosAcosB+sinAsinB}
=2[1−cos(x−y)]
=2[1−{1−2sin2(x−y2)}]=2[2sin2(x−y2)]=4sin2x−y2=R.H.S
Hence proved.