wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
cos x1-sin x=tan π4+x2

Open in App
Solution

LHS=cos x1-sin x
=cos2x2-sin2x2sin2x2+cos2x2-2sinx2×cosx2 cosx=cos2x2-sin2x2, sinx=2sinx2cosx2 and sin2x2+cos2x2=1 =cosx2-sinx2cosx2+sinx2cosx2-sinx22 =cosx2+sinx2cosx2-sinx2

On dividing the numerator and denominator by cosx2, we get

=1+tanx21-tanx2 =tanπ4+x2=RHSHence proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon