wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
cos2π15 cos4π15 cos 8π15 cos 16π15 =116

Open in App
Solution

LHS=cos2π15 cos4π15 cos8π15 cos16π15

On dividing and multiplying by 2sin2π15, we get

=12sin2π15×2sin2π15×cos2π15 ×cos4π15 ×cos8π15 × cos16π15 =12×2sin2π15×2sin4π15×cos4π15 ×cos8π15 × cos16π15 =12×4sin2π152sin8π15×cos8π15 × cos16π15 =12×8sin2π152sin16π15 × cos16π15 =116sin2π15sin32π15

=-116sin2π15sin2π-32π15 sin2π-θ=-sinθ =-116sin2π15sin-2π15 =116=RHSHence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon