wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that, cos20cos40cos60cos80o=116

Open in App
Solution

We have,

L.H.S.

cos20ocos40ocos60ocos80o

cos20ocos40o12cos80ocos60o=12

12cos20ocos40ocos80o

Multiply and dived by 2 and we get,

14(2cos20ocos40o)cos80o

14(cos(20o+40o)+cos(20o40o))cos80o

14(cos60o+cos20o)cos80o

14(12+cos20o)cos80o

18(1+2cos20o)cos80o

18(cos80o+2cos20ocos80o)

18(cos80o+(cos(20o+80o)+cos(20o80o)))

18(cos80o+(cos100o+cos(60o)))

18(cos80o+(cos100o+cos60o))

18(cos80o+(cos100o+12))

18(cos80o+cos100o+12)

18(cos80o+cos100o)+116

18(2cos(80o+100o2)cos(80o100o2))+116

18(2cos90ocos20o)+116

18(2×0cos20o)+116

116

R.H.S.


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon