L.H.S.=cos2xcosx2−cos3xcos9x2
=12(cos(2x+x2)+cos(2x−x2))−12(cos(3x+9x2)+cos(3x−9x2))=12(cos5x2+cos3x2−cos15x2−cos3x2)=12(cos5x2−cos15x2)=12⎛⎜
⎜
⎜⎝−2 sin⎛⎜
⎜
⎜⎝5x2+15x22⎞⎟
⎟
⎟⎠sin⎛⎜
⎜
⎜⎝5x2−15x22⎞⎟
⎟
⎟⎠⎞⎟
⎟
⎟⎠=sin(20x4)sin(10x4)=sin(5x) sin(5x2)=R.H.S
Hence proved