1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Physics
Introduction
Prove that : ...
Question
Prove that :
c
o
s
e
c
2
(
90
∘
−
θ
)
−
t
a
n
2
θ
=
c
o
s
2
(
90
∘
−
θ
)
+
c
o
s
2
θ
Open in App
Solution
We have
LHS =
c
o
s
e
c
2
(
90
∘
−
θ
)
−
t
a
n
2
θ
[
∵
c
o
s
e
c
2
(
90
∘
−
θ
)
=
s
e
c
θ
]
⇒
L
H
S
=
s
e
c
2
θ
−
t
a
n
2
θ
=
1
[
∵
s
e
c
2
θ
−
t
a
n
2
θ
=
1
]
and
RHS =
c
o
s
2
(
90
∘
−
θ
)
+
c
o
s
2
θ
⇒
R
H
S
=
s
i
n
2
θ
+
c
o
s
2
θ
=
1
[
∵
c
o
s
(
90
∘
−
θ
)
=
s
i
n
θ
]
Hence , LHS = RHS
Suggest Corrections
1
Similar questions
Q.
Prove that:
s
e
c
2
θ
−
c
o
t
2
(
90
∘
−
θ
)
=
c
o
s
2
(
90
∘
−
θ
)
+
c
o
s
2
θ
.
Q.
Evaluate:
c
o
s
e
c
2
(
90
−
θ
)
−
t
a
n
2
θ
Q.
C
o
s
2
θ
+
c
o
s
2
(
90
−
θ
)
= ?
Q.
Write the value of cosec
2
(90° − θ) − tan
2
θ.