wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that (cosec θ − sin θ)(sec θ − cos θ) = 1tanθ+cotθ.

Open in App
Solution

LHS = (cosec θ − sin θ)(sec θ − cos θ)
=1sinθ-sinθ1cosθ-cosθ=1-sin2θsinθ×1-cos2θcosθ
=cos2θsin2θsinθcosθ [Since (1 - sin2θ) = cos2θ and (1 - cos2θ) = sin2θ]
=cosθsinθ
RHS=1tanθ+cotθ
=1sinθcosθ+cosθsinθ=cosθsinθsin2θ+cos2θ
=cosθsinθ1=cosθsinθ [ Since sin2θ + cos2θ = 1]
Hence, LHS = RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Values of Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon