1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Physics
Introduction
Prove that c...
Question
Prove that
c
o
s
e
c
θ
(
1
+
c
o
s
θ
)
(
c
o
s
e
c
θ
−
c
o
t
θ
)
=
1
Open in App
Solution
L
H
S
=
csc
θ
(
1
+
cos
θ
)
(
csc
θ
−
cot
θ
)
=
(
csc
θ
+
cot
θ
)
(
csc
θ
−
cot
θ
)
=
csc
2
θ
−
cot
2
θ
=
1
=
R
H
S
Suggest Corrections
1
Similar questions
Q.
(i) (1 + cos θ) (1 − cos θ) (1 + cot
2
θ) = 1
(ii) cosec θ (1 + cos θ) (cosec θ − cot θ) = 1
Q.
The value of
(
1
+
c
o
t
θ
−
c
o
s
e
c
θ
)
(
1
+
t
a
n
θ
+
s
e
c
θ
)
is
Q.
Prove that :
t
a
n
Θ
1
−
c
o
t
Θ
+
c
o
t
Θ
1
−
t
a
n
Θ
=
1
+
t
a
n
Θ
+
c
o
t
Θ
Q.
Prove the following trigonometric identities.
cos
θ
cosec
θ
+
1
+
cos
θ
cosec
θ
-
1
=
2
tan
θ