Prove that: (cosecθ−cotθ)2=1−cosθ1+cosθ
Lets take LHS and then equate it to RHS.
LHS =(cosecθ−cotθ)2
=(1sinθ−cosθsinθ)2
=(1−cosθsinθ)2
=(1−cosθ)2sin2θ
=(1−cosθ)21−cos2θ
=(1−cosθ)(1−cosθ)(1+cosθ)(1−cosθ)
=1−cosθ1+cosθ
= RHS
⇒ LHS = RHS
∴(cosecθ−cotθ)2=1−cosθ1+cosθ
Hence, proved.