1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Sign of Trigonometric Ratios in Different Quadrants
Prove that : ...
Question
Prove that : -
c
o
s
e
c
θ
+
cot
θ
=
1
c
o
s
e
c
θ
−
cot
θ
Open in App
Solution
c
o
s
e
c
θ
+
c
o
t
θ
=
1
c
o
s
e
c
θ
−
c
o
t
θ
solving LHS.
c
o
s
e
c
θ
+
c
o
t
θ
= (on rationalizing)
(
c
o
s
e
c
θ
+
c
o
t
θ
)
(
c
o
s
e
c
θ
−
c
o
t
θ
)
(
c
o
s
e
c
θ
−
c
o
t
θ
)
c
o
s
e
c
2
θ
−
c
o
t
2
θ
c
o
s
e
c
θ
−
c
o
t
θ
=
1
s
i
n
2
θ
−
c
o
s
2
θ
s
i
n
2
θ
[
∵
c
o
s
e
c
θ
=
1
s
i
n
θ
c
o
t
θ
=
c
o
s
e
c
θ
s
i
n
θ
]
1
−
c
o
s
2
θ
s
i
n
2
θ
c
o
s
e
c
θ
−
c
o
t
θ
=
1
c
o
s
e
c
θ
−
c
o
t
θ
[
∵
1
−
c
o
s
2
θ
=
s
i
n
2
θ
]
$\because L.H.S =\frac{1}{cosec\theta-cot\theta} = RHS.
Suggest Corrections
0
Similar questions
Q.
If
cot
θ
=
3
4
, prove that
√
sec
θ
−
cosec
θ
sec
θ
+
cosec
θ
=
1
√
7
Q.
Prove the following trigonometric identities.
If cosec θ + cot θ = m and cosec θ − cot θ = n, prove that mn = 1