wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that cot1(1+sinx+1sinx1+sinx1sinx)=x2;x(0,π4).

Open in App
Solution

LHS =cot1[1+sinx+1sinx1+sinx1sinx],x(0,π4)
Given, 0<x<π4
0<x<π8
x2(0,π4)(0,π)
cot1⎜ ⎜ ⎜ ⎜(cosx2+sinx2)2+(cosx2sinx2)2(cosx2+sinx2)2+(cosx2sinx2)2⎟ ⎟ ⎟ ⎟
=cot1⎜ ⎜cosx2+sinx2+cosx2sinx2cosx2+sinx2cosx2+sinx2⎟ ⎟
=cot1⎜ ⎜cosx2sinx2⎟ ⎟cot1(cotx2)x2= RHS
Hence proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon