tan8212∘=tan(90∘−712∘)=cot712∘=cotA say where A = 712∘
Now cotA=cosAsinA=2cos2A2sinAcosA
=1+cos2Asin2A=1+cos15∘sin15∘
Now put the values of cos15∘ and sin15∘ from
R.(33) P.518
∴cot71∘2=2√2+(√3+1)√3−1×√3+1√3+1
=2√2(√3+1)(√3+1)23−1
=2√6+2√2+4+2√32
=√6+√2+2+√3
=√2(√2+1)+√3(√2+1)
(√2+1)(√3+√2)