wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that
cot712=(3+2)(2+1)=2+3+4+6
or tan8212=(3+2)(2+1)

Open in App
Solution

tan8212=tan(90712)=cot712=cotA say where A = 712
Now cotA=cosAsinA=2cos2A2sinAcosA
=1+cos2Asin2A=1+cos15sin15
Now put the values of cos15 and sin15 from
R.(33) P.518
cot712=22+(3+1)31×3+13+1
=22(3+1)(3+1)231
=26+22+4+232
=6+2+2+3
=2(2+1)+3(2+1)
(2+1)(3+2)

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon