wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that, cot 712 or tan 8212 = (3+2)(2+1) or 2+3+4+6

Open in App
Solution

We need to find value of cot(712)
cotθ=cosθsinθ
sin(15o)=sin(4530o)
=sin45ocos30ocos45osin30o
or sin(AB)=sinAcosBcosAcosB(Trigonometric property)
=(12)(32)(12)(12)=122(31)=sin15o)
Similarly cos15o=cos(4530o)
cos45ocos30o+sin45osin30
as cos(AB)=cosAcosB+sinAsinB
=(12)(22)+(12)(12)=3+122=cos15
cot(712)=cos(712)sin(712)=2cos(712)cos(712)2sin(71x)cos(12)=2cos2(712)sin(2×712)
(multiply and divide by 2cos(712))
as sin(2A)2sinAcosA,cos2A=2cos2A1
So, cot(712)=1+cos15osin15o=1+3+1223122=1+3+2231
=(1+3+22)(3+1)(31)(3+1)=1+3+22+3+3+26(3)2(1)2
So, cot(712)=(2+3+4+6)=(2+3)(2+1)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon