We need to find value of cot(712)
cotθ=cosθsinθ
sin(15o)=sin(45−30o)
=sin45ocos30o−cos45osin30o
or sin(A−B)=sinAcosB−cosAcosB(Trigonometric property)
=(1√2)(√32)−(1√2)(12)=12√2(√3−1)=sin15o)
Similarly cos15o=cos(45−30o)
cos45ocos30o+sin45osin30
as cos(A−B)=cosAcosB+sinAsinB
=(1√2)(√22)+(1√2)(12)=√3+12√2=cos15
cot(712)=cos(712)sin(712)=2cos(712)cos(712)2sin(71x)cos(12)=2cos2(712)sin(2×712)
(multiply and divide by 2cos(712))
as sin(2A)−2sinAcosA,cos2A=2cos2A−1
So, cot(712)=1+cos15osin15o=1+√3+12√2√3−12√2=1+√3+2√2√3−1
=(1+√3+2√2)(√3+1)(√3−1)(√3+1)=1+√3+2√2+√3+3+2√6(√3)2−(1)2
So, cot(712)=(√2+√3+√4+√6)=(√2+√3)(√2+1)