cot(π4−2cot−13)=7let2cot−13=θcot−13=θ2cotθ2=3tanθ2=13⇒cot(π4−θ)=7⇒cotπ4⋅cotθ+1cotθ−cotπ4=7⇒cotθ+1cotθ−1=7⇒1+tanθ1−tanθ=⎛⎜⎝1+2tanθ21⋅tan2θ2⎞⎟⎠⎛⎜⎝1−2tanθ21⋅tan2θ2⎞⎟⎠Puttanθ2=13⇒⎛⎜⎝1+231−19⎞⎟⎠⎛⎜⎝1−231−19⎞⎟⎠⇒1+23×981−23×98⇒1+341−34⇒7414=7∴cot(π4−2cot−13)=7proved