wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that cotθ+cot(60o+θ)+cot(120o+θ)=3cot3θ

Open in App
Solution

We know that,
cot(A+B)=cotAcotB1cotB+cotA
So,
L.H.S=cotθ+cot(60o+θ)+cot(120o+θ)=cotθ+cot60ocotθ1cotθ+cot60o+cot120ocotθ1cotθ+cot120o=cotθ+13cotθ1cotθ+13+13cotθ1cotθ13=cotθ+(13cotθ1)(cotθ13)+(13cotθ1)(cotθ+13)cot2θ13=cotθ+13cot2θcotθ13cotθ+1313cot2θcotθ13cotθ13cot2θ13=cot3θ13cotθ+13cot2θcotθ13cotθ+1313cot2θcotθ13cotθ133cot2θ13=cot3θ33cotθ2cotθ3cot2θ13=3(cot3θ3cotθ)(3cot2θ1)=3cot3θ[cot3A=cot3A3cotA3cot2A1]=R.H.S

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon