wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that 1+cosAsinA+sinA1+cosA=2cscA

Open in App
Solution

LHS = 1+cosAsinA+sinA1+cosA
=(1+cosA)2+sin2AsinA(1+cosA)
=1+2cosA+cos2A+sin2AsinA(1+cosA)
=1+2cosA+1sinA(1+cosA)[sin2A+cos2A=1]
=2+2cosAsinA(1+cosA)
=2[1+cosA]sinA(1+cosA)
=2sinA
=2cosecA=RHS
LHS = RHS
Hence proved.

1090190_1180528_ans_9e06c8cdd8be4668897ab8e11c03f2ba.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon