1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Trigonometric Identities
Prove that ...
Question
Prove that
1
+
cos
A
sin
A
+
sin
A
1
+
cos
A
=
2
csc
A
Open in App
Solution
LHS =
1
+
c
o
s
A
s
i
n
A
+
s
i
n
A
1
+
c
o
s
A
=
(
1
+
c
o
s
A
)
2
+
s
i
n
2
A
s
i
n
A
(
1
+
c
o
s
A
)
=
1
+
2
c
o
s
A
+
c
o
s
2
A
+
s
i
n
2
A
s
i
n
A
(
1
+
c
o
s
A
)
=
1
+
2
c
o
s
A
+
1
s
i
n
A
(
1
+
c
o
s
A
)
[
s
i
n
2
A
+
c
o
s
2
A
=
1
]
=
2
+
2
c
o
s
A
s
i
n
A
(
1
+
c
o
s
A
)
=
2
[
1
+
c
o
s
A
]
s
i
n
A
(
1
+
c
o
s
A
)
=
2
s
i
n
A
=
2
c
o
s
e
c
A
=
R
H
S
LHS = RHS
Hence proved.
Suggest Corrections
0
Similar questions
Q.
Prove the following trigonometric identities.
1
+
cos
A
sin
A
=
sin
A
1
-
cos
A