wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:

1+cosθ+sinθ1+cosθsinθ=1+sinθcosθ

Open in App
Solution

Lets take LHS and then equate it to RHS.
LHS =1+cosθ+sinθ1+cosθsinθ

=(1+cosθ+sinθ)(1+cosθ+sinθ)(1+cosθsinθ)(1+cosθ+sinθ)


=(1+cosθ+sinθ)2(1+cosθ)2sin2θ [(a+b)(ab)=a2b2]

=12+cos2θ+sin2θ+2cosθ+2sinθ+2cosθsinθ1+cos2θ+2cosθsin2θ

=1+1+2cosθ+2sinθ+2cosθsinθ1sin2+cos2θ+2cosθ

==2+2cosθ+2sinθ+2cosθsinθcos2θ+cos2θ+2cosθ

=2(1+cosθ+sinθ+cosθsinθ)2cos2θ+2cosθ

=2((1+cosθ)+sinθ(1+cosθ))2((1+cosθ)cosθ)

=(1+sinθ)(1+cosθ)(1+cosθ)cosθ

=1+sinθcosθ
=RHS

Therefore, 1+cosθ+sinθ1+cosθsinθ=1+sinθcosθ

Hence proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon