Prove that:
1+cosθ+sinθ1+cosθ−sinθ=1+sinθcosθ
=(1+cosθ+sinθ)2(1+cosθ)2−sin2θ [∵(a+b)(a−b)=a2−b2]
=12+cos2θ+sin2θ+2cosθ+2sinθ+2cosθsinθ1+cos2θ+2cosθ−sin2θ
=1+1+2cosθ+2sinθ+2cosθsinθ1−sin2+cos2θ+2cosθ
==2+2cosθ+2sinθ+2cosθsinθcos2θ+cos2θ+2cosθ
=2(1+cosθ+sinθ+cosθsinθ)2cos2θ+2cosθ
=2((1+cosθ)+sinθ(1+cosθ))2((1+cosθ)cosθ)
Therefore, 1+cosθ+sinθ1+cosθ−sinθ=1+sinθcosθ