wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that :-
1+cosθsinθ+sinθ1+cosθ=2.cosecθ

Open in App
Solution

L.H.S

1+cosθsinθ+sinθ1+cosθ

=(1+cosθ)2+sin2θsinθ(1+cosθ)

=1+cos2θ+2cosθ+sin2θsinθ(1+cosθ)

=1+cos2θ+sin2θ+2cosθsinθ(1+cosθ)(Since:sin2x+cos2x=1)

=1+1+2cosθsinθ(1+cosθ)

=2+2cosθsinθ(1+cosθ)

=2(1+cosθ)sinθ(1+cosθ)

=2sinθ

=2cscθ

Hence, proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon