wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that :
(1+cotA+tanA)(sinacosA)sec3Acosec3A=sin2Acos2A

Open in App
Solution

LHS=(1+cosAsinA+sinAcosA)(sinAcosA)(1cos3A1sin3A)

.LHS=(1+cos2A+sin2AsinAcosA)(sinAcosA)(sin3Acos3Asin3Acos3A)

LHS=(1+1sinAcosA)(sinAcosA)sin3Acos3A(sin3Acos3A)

LHS=(sinAcosA+1)(sinAcosA)sin2Acos2A(sinAcosA)(sin2A+cos2A+sinAcosA)[a3b3=(ab)(a2+b2+ab)]

LHS=(sinAcosA+1)sin2Acos2A(1+sinAcosA)=sin2Acos2A= RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identity- 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon