wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Prove that 1+secθtanθ1+secθ+tanθ=1sinθcosθ

Open in App
Solution

L.H.S= 1+secθtanθ1+secθ+tanθ
=secθtanθ+1secθ+tanθ+1
=secθtanθ+(sec2θ+tan2θ)secθ+tanθ+1 [sec2θtan2θ=1]
=secθtanθ+(secθtanθ)(secθ+tanθ)secθ+tanθ+1
=(secθtanθ)(1+secθ+tanθ)(1+secθ+tanθ)
=1cosθsinθcosθ
=1sinθcosθ =R.H.S
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon