wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that 1+sinAcosAcosA+sinA1=tanA2.

Open in App
Solution

consider the following equation.

1+sinAcosAcosA+sinA1=tanA2


Solve LHS

1+sinAcosA1sinA+cosA =cscθ+cotθ11cscθ+cotθ

=secA+tanA(csc2Acot2A)(1cscA+cotA)

=(cscA+cotA)(cscAcotA)(cscA+cotA)cscA+cotA+1

=(cscA+cotA)(1(cscAcotA))(1cscA+cotA)

=(cscA+cotA)(1(cscAcotA))(1cscA+cotA)

=(cscA+cotA)

=1sinA+cosAsinA

=1+cosAsinA

=2sin2A22sinA2cosA2

=tanA2

LHS=RHS

Hence, proved


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric ratios of standard angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon