Solving the LHS of 1−tanA1+tanA=cotA−1cotA+1
1−tanA1+tanA=1−1cotA1+1cotA
=cotA−1cotAcotA+1cotA
=cotA−1cotA+1
=RHS
Prove that :
tanA/1-cotA + cotA/1-tanA = secAcosecA+1