41!+112!+223!+374!+565!+.......
=41!+4+72!+4+7+113!+4+7+11+254!+4+7+11+25+195!+.......
Now, the nth element in the series is
tn=(4+7+11+15+19+.....+nthelement)n!
or, tn=4+(n−1)2{2×7+(n−2)4}n!
or, tn=4+(n−1)(2n+3)n!
or, tn=(2n2+n+1)n!
or, tn=(2n(n−1)+2n+n+1)n!
or, tn=21(n−2)! +31(n−1)!+1n!.
Now the given series =∞∑n=1tn= ∞∑n=2 21(n−2)!+∞∑n=131(n−1)! +∞∑n=1 1n! =2e+3e+(e−1)=6e−1.
[Since, ∞∑n=11(n−1)! =e and ∞∑n=11(n)! =e−1.]