L.H.S.
9π8−94sin−1(13)
=94(π2−sin−1(13))∴sin−1x+cos−1x=π2
=94(cos−1(13))
=94⎛⎝sin−1√1−(13)2⎞⎠∴cos−1x=sin−1√1−x2
=94(sin−1√89)
=94(sin−12√23)
R.H.S.
Prove that 9π8−94sin−1(13)=94sin−1(2√23)