To prove:-
a2+b2−c2c2+a2−b2=tanBtanC
Proof:-
To prove above identity, we will use sine and cosine rule-
Sine rule:-
sinAa=sinBb=sinCc=k(say) OR asinA=bsinB=csinC=k(say)
Cosine rule:-
a2=b2+c2−2bccosA
b2=c2+a2−2cacosB
c2=a2+b2−2abcosC
Now
a2+b2−c2c2+a2−b2=tanBtanC
Taking L.H.S.-
a2+b2−c2c2+a2−b2
From cosine rule, we have
=a2+b2−(a2+b2−2abcosC)c2+a2−(a2+c2−2accosB)
⇒=a2+b2−a2−b2+2abcosCc2+a2−a2−c2+2accosB
⇒=2abcosC2accosB
⇒=bcosCccosB
Now from sine rule, we have
=ksinBcosCksinCcosB[∵c=ksinC&b=ksinB]
=(sinBcosB)(sinCcosC)
=tanBtanC
= R.H.S.
Hence proved that a2+b2−c2c2+a2−b2=tanBtanC.