wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that
(a+b+c)2a2+b2+c2=cot12A+cot12B+cot12CcotA+cotB+cotC

Open in App
Solution

cot12A+cot12B+cot12C
= [s(sa)(sa)(sc)]+[s(sb)(sc)(sa)]+[s(sc)(sa)(sb)]
= s[(sa)+(sb)+(sc)]s[(sa)(sb)(sc)]
=ss(3s2s)s(sa)(sb)(sc)]=s2S
and Cot A + cot B + cos C
=cosAsinA+CosBsinB+cosCsinC
=(b2+c2a2)/2bc2S/bc+(c2+a2b2)/2ca2S/ca+(a2+b2c2)/2ab2S/ab
=(1/4s)[b2+c2a2+c2+a2b2+a2+b2c2]
=a2+b2+c24S. ...........(I)
Hence R.H.S.
=s2S×4Sa2+b2+c2=4s2a2+b2+c2=(a+b+c)2a2+b2+c2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Half Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon