(1−x)n=1−C1x+C2x2−C3x3+(−1)nCnxn.
or (1−x)nx−1x=−C1+C2x−C3x2+...+(−1)nCnxn−1
1−(1−x)n1−(1−x)=−C1+C2x−C3x2+...+(−1)nCnxn−1
L.H.S. = Sum of a G.P.
∴1+(1−x)+(1−x)2+......+(1−x)n−1
C1−C2x+C3x2...........+(−1)n−1Cnxn−1
Putting x = 0, we get
−12−13−.....−1n+C=0
∴C=12+13+.....+1n
Now putting x = 1 in both sides of (1)
1+C=C1−C22+c33−C44+.......
Now put for C from (2)
or 1+12+13+.....+1n
=C1−C22+C33−+(−1)n−1Cnn