Take LHS of the given equation.
cos2θ1−tanθ+sin3θsinθ−cosθ=cos2θ1−sinθcosθ+sin3θsinθ−cosθ
=cos3θcosθ−sinθ+sin3θsinθ−cosθ
=cos3θ−sin3θcosθ−sinθ
=(cosθ−sinθ)(cos2θ+sin2θ+sinθcosθ)cosθ−sinθ
=1+sinθcosθ
=RHS
Solve the following equations :(i) cos θ+cps 2θ+cos 3θ=0(ii) cos θ+cos 3θ−cos 2θ=0(iii) sin θ+sin 5θ=sin 3θ(iv) cos θ cos 2θ cos 3θ=14(v) cos θ+sin θ=cos 2θ+sin2θ(vi) sin θ+sin 2θ+sin 3θ=0(vii) sin θ+sin 2θ+sin 3θ+sin 4θ=0(viii) sin 3θ−sin θ=4 cos2θ−2(ix) sin 2θ−sin 4θ+sin 6θ=0