wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that
cos2B+cos2Acos2Bcos2A=cot(A+B)cot(AB).

Open in App
Solution

L.H.S=cos2B+cos2Acos2Bcos2A
=2cos(2B+2A2)cos(2B2A2)2sin(2B+2A2)sin(2B2A2) using transformation angle formula, cosC+cosD=2cos(C+D2)cos(CD2) and cosCcosD=2sin(C+D2)sin(CD2)
=cos(A+B)cos(AB)sin(A+B)sin(AB) using sin(θ)=sinθ and cos(θ)=cosθ
=cos(A+B)cos(AB)sin(A+B)sin(AB)
=cot(A+B)cot(AB)=R.H.S
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon