wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that : cos3θ+cos3ϕ2cos(0ϕ)1
=(cosθ+cosϕ)cos(0+ϕ)(sinθ+sinϕ)sin(θ+ϕ)

Open in App
Solution

Take Dr from L.H.S. to R.H.S.
R.H.S. = (cos θ + cos 4π) [(cos 2θ + cos 2ϕ) - cos(θ + ϕ)]-(sin θ + sin ϕ)[(sin 2θ + sin 2ϕ)-sin(θ + ϕ)]
= T1+T2 each of which will have 6 terms on multiplication and then use
cos A cos B - sin A sin B = cos (A + B)
R.H.S. = (cos 2θ cos θ - sin 2θ sin θ) + (cos 2ϕ cos 2ϕ - sin 2ϕ sin ϕ) + cos(2θ + ϕ) + cos(2ϕ + θ) -cos(2θ + ϕ) -cos(2ϕ + θ)
= cos 3θ + cos 3ϕ, other terms cancel.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon