wiz-icon
MyQuestionIcon
MyQuestionIcon
5
You visited us 5 times! Enjoying our articles? Unlock Full Access!
Question

Prove that cos3θ+sin3θcosθ+sinθ+cos3θsin3θcosθsinθ=2

Open in App
Solution

L.H.S=cos3θ+sin3θcosθ+sinθ+cos3θsin3θcosθsinθ
=(cosθ+sinθ)(cos2θ+sin2θcosθsinθθ)cosθ+sinθ+(cosθsinθ)(cos2θ+sin2θ+cosθsinθθ)cosθsinθ
=cos2θ+sin2θcosθsinθθ+cos2θ+sin2θ+cosθsinθθ
=2(cos2θ+sin2θ)
=2=R.H.S since cos2θ+sin2θ=1
Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon