cos4x+cos3x+cos2xsin4x+sin3x+sin2x=cot3x
L.H.S=cos4x+cos3x+cos2xsin4x+sin3x+sin2x=(cos4x+cos2x)+cos3x(sin4x+sin2x)+sin3x
sinA+sinB=2sin(A+B2)cos(A−B2)
cosA+cosB=2cos(A+B2)cos(A−B2)
=2cos(4x+2x2)cos(4x−2x2)+cos3x2sin(4x+2x2)cos(4x−2x2)+sin3x
=2cos3xcosx+cos3x2sin3xcosx+sin3x
=2cos3x(2cosx+1)2sin3x(2cosx+1)=cot3x
⇒L.H.S=R.H.S
Hence Proved.