wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that cos4x+cos3x+cos2xsin4x+sin3x+sin2x=cot3x

Open in App
Solution

cos4x+cos3x+cos2xsin4x+sin3x+sin2x=cot3x

L.H.S=cos4x+cos3x+cos2xsin4x+sin3x+sin2x=(cos4x+cos2x)+cos3x(sin4x+sin2x)+sin3x
sinA+sinB=2sin(A+B2)cos(AB2)
cosA+cosB=2cos(A+B2)cos(AB2)
=2cos(4x+2x2)cos(4x2x2)+cos3x2sin(4x+2x2)cos(4x2x2)+sin3x
=2cos3xcosx+cos3x2sin3xcosx+sin3x
=2cos3x(2cosx+1)2sin3x(2cosx+1)=cot3x
L.H.S=R.H.S
Hence Proved.

flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon