wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that : cos6θ+6cos4θ+15cos2θ+10cos5θ+5cos3θ+10cosθ=2cosθ

Open in App
Solution

We have 2cosθ(cos5θ+5cos3θ+10cosθ)
=2cosθcos5θ+10cosθcos3θ+20cosθcos5θ using cosAcosB=12[cos(A+B)+cos(AB)]
=cos4θ+cos6θ+5cos2θ+5cos4θ+10cos2θ+10cos0
=cos6θ+6cos4θ+15cos2θ+10
2cosθ(cos5θ+5cos3θ+10cosθ)=cos6θ+6cos4θ+15cos2θ+10
2cosθ=cos6θ+6cos4θ+15cos2θ+10(cos5θ+5cos3θ+10cosθ)
or cos6θ+6cos4θ+15cos2θ+10(cos5θ+5cos3θ+10cosθ)=2cosθ
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon